
Chapter 7:
Synchronization

Examples
CS 3423 Operating Systems

Fall 2019
National Tsing Hua University

1

Classic Synchronization
Problems

• Purpose
• Used for testing newly proposed synchronization

schemes

• Problems

1. Bounded-Buffer problem (producer-consumer)

2. Readers-Writers problem

3. Dining-Philosopher problem

2

1. Bounded-Buffer Problem
• n buffers, 3 semaphores

• semaphore mutex = 1; // mutual exclusive access

• semaphore full = 0; // "barrier", #items produced

• semaphore empty = n; // #empty buffers

• Producer:

• [produce] wait(empty), wait(mutex), enqueue-buffer,
signal(mutex), signal(full);

• Consumer:
• wait (full), wait(mutex), dequeue-buffer,

signal(mutex), signal(empty); [consume]

3

1. Bounded-Buffer Problem
• n buffers, 3 semaphores

• mutex = 1, full = 0, empty = n;

Producer:
 produce next item;
 wait(empty);
 wait(mutex);
 add next produced to buffer;
 signal(mutex);
 signal(full);

Consumer:
 wait(full);
 wait(mutex);
 remove an item from buffer;
 signal(mutex);
 signal(empty);
 consume the item;

4

Assumption: context switch can happen anywhere!

2. Readers-Writers Problem
• Readers

• multiple readers at the same time (no writer)

• Writers:

• at most one writer at a time is allowed to read-and-
write shared data.
=> one reader or one writer excludes all other writers

• Possible variations

1. readers don't wait unless writer is accessing

2. writer has highest priority, blocks out readers

5

2.1 Readers-Writers algorithm
Readers don't wait unless writer accessing
• // mutex for write

semaphore rw_mutex = 1;
semaphore mutex = 1;
int readcount = 0;

• Writer() { // any writer
 while (TRUE) {
 wait(rw_mutex);
 // write code
 signal(rw_mutex);
 }
}

• Reader() { // any reader
 while (TRUE) {
 wait(mutex); // protects readcount ++
 readcount++;
 if (readcount==1) {
 wait(rw_mutex);
 }
 // get write lock if readers haven't already
 signal(mutex):
 // read code
 wait(mutex); // protects readcount --
 if (--readcount == 0) {
 signal(rw_mutex);
 }
 signal(mutex);
 }
}

6

2.1 how it works
• rw_mutex allows at most

• one of the writers to read/write, or

• the first reader to read

• mutex
• allows one of the readers to update readcount at a

time, but

• allows more than one reader to read at the same
time when there is no writer

7

Issues with Readers-Writers
Algorithm (v.1)

• Readers share a single write lock

• Writers may have starvation problem
• Both v1. and v.2 may have starvation leading to

even more variations

• Possible solutions
• on some systems, kernel provides reader-writer

locks

8

Dining-Philosophers Problem
• Philosophers spend their lives alternating thinking

and eating
• Don’t interact with their neighbors

• occasionally try to pick up 2 chopsticks (one at a time) to eat
from bowl

• Need both to eat, then release both when done

• In the case of 5 philosophers

• Shared data

• Bowl of rice (data set)

• Semaphore chopstick[5]	=	{1,1,1,1,1};

9

 Dining-Philosophers Problem
Algorithm

• The structure of Philosopher i:
• do {

 wait (chopstick[i]);
 wait (chopStick[(i + 1) % 5]);
 // eat
 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);
 // think
} while (TRUE);

• What are problems with this algorithm?

• (1) Deadlock, (2) Starvation

10

Why deadlock?
• Each philosopher i picks up chopstick[i]

• Before picking up chopstick[(i+1)%5], get
context switched

• by the time philosopher i gets switched back,
tries to pick chopstick[(i+1)%5], but it is already
locked by philosopher (i+1)%5

• No philosopher i can pick up
chopstick[(i+1)%5] => deadlock!

• Solution: Monitor

11

Approach with Monitor
• Declare state of each philosopher

• enum { THINKING, HUNGRY, EATING } state[5];

• Declare condition variable for each philosopher to
delay eating if can't obtain chopsticks at the moment

• condition self[5];

• Declare methods for

• pickup chopstick i -- possibly block

• putdown chopstick i -- possibly unblock neighbor

• "test" -- try to let i eat if it is hungry

12

Monitor code for Dining
Philosophers

monitor	DiningPhilosophers	
{		
	 enum	{THINKING,	HUNGRY,	EATING}	

			state[5];	
	 condition	self	[5];	

	 void	pickup	(int	i)	{		
	 			state[i]	=	HUNGRY;	
	 			test(i);	
	 			if	(state[i]	!=	EATING)		

						self[i].wait;	
		}	
	 	
		void	putdown	(int	i)	{		
	 			state[i]	=	THINKING;	
					//	test	L	and	R	neighbors	
	 			test((i	+	4)	%	5);	
	 			test((i	+	1)	%	5);	
		}

	 void	test	(int	i)	{		
	 		if	((state[(i	+	4)	%	5]	!=	EATING)	&&	
	 					(state[i]	==	HUNGRY)	&&	
	 					(state[(i	+	1)	%	5]	!=	EATING))	{		
	 							state[i]	=	EATING	;	
	 	 				self[i].signal	()	;	
	 			}	
			}	

			initialization_code()	{		
	 			for	(int	i	=	0;	i	<	5;	i++)	
	 					state[i]	=	THINKING;	
	 	}	
}

13

Solution to Dining Philosophers
(Cont.)

• Each philosopher i invokes the operations
pickup() and putdown() in the following
sequence:
• DiningPhilosophers.pickup(i);

• EAT

• DiningPhilosophers.putdown(i);

• No deadlock, but starvation is possible

14

Illustration (1)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 67

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

15

Illustration (2)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 68

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} hungry

16

Illustration (3)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 69

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} eating

P1

17

Illustration (4)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 70

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 hungry Î self[2].wait

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

void pickup(int i) {
 state[i] = hungry;
 test(i); //try to eat
 if (state[i] != eating)
 self[i].wait();//wait to eat
} eating

P2

18

Illustration (5)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 71

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 hungry Î self[2].wait

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

void putdown(int i) {
 state[i] = thinking;
 // check if neighbors
 // are waiting to eat
 test((i+4) % 5); test((i+1) % 5);
} thinking

P1

19

Illustration (6)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 72

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 eating Î self[2].signal

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

void putdown(int i) {
 state[i] = thinking;
 // check if neighbors
 // are waiting to eat
 test((i+4) % 5); test((i+1) % 5);
} thinking

P1

20

Illustration (7)

Chapter6 Synchronization Operating System Concepts – NTHU LSA Lab 73

thinking
P0 P1

P2

P3

P4

0
1

2

3 4 thinking

thinking

An illustration

P2:

DiningPhilosophers.pickup(2)

 eat

DiningPhilosophers.putdown(2)

thinking

P1:

DiningPhilosophers.pickup(1)

 eat

DiningPhilosophers.putdown(1)

thinking

21

